Optimal Algorithms for Tower of Hanoi Problems with Relaxed Placement Rules
نویسندگان
چکیده
We study generalizations of the Tower of Hanoi (ToH) puzzle with relaxed placement rules. In 1981, D. Wood suggested a variant, where a bigger disk may be placed higher than a smaller one if their size difference is less than k. In 1992, D. Poole suggested a natural diskmoving strategy, and computed the length of the shortest move sequence (algorithm) under its framework. However, other strategies were not considered, so the lower bound/optimality question remained open. In 1998, Beneditkis, Berend, and Safro were able to prove the optimality of Poole’s algorithm for the first non-trivial case k = 2 only. We prove it be optimal in the general case. Besides, we prove a tight bound for the diameter of the configuration graph of the problem suggested by Wood. Further, we consider a generalized setting, where the disk sizes should not form a continuous interval of integers. To this end, we describe a finite family of potentially optimal algorithms and prove that for any set of disk sizes, the best one among those algorithms is optimal. Finally, a setting with the ultimate relaxed placement rule (suggested by D. Berend) is defined. We show that it is not more general, by finding a reduction to the second setting.
منابع مشابه
Algorithms and Bounds for Tower of Hanoi Problems on Graphs
The classic Tower of Hanoi puzzle was marketed by Edouard Lucas in 1883 under the name ”Tower of Hanoi” [31]. There, n disks are due to be moved from one peg to another, using an auxiliary peg while never placing a bigger disk above a smaller one. Its optimal solution is classic in Computer Science. In this thesis, we study a generalization of the original puzzle. The problem is generalized by ...
متن کاملThe Magnetic Tower of Hanoi
In this work I study a modified Tower of Hanoi puzzle, which I term Magnetic Tower of Hanoi (MToH). The original Tower of Hanoi puzzle, invented by the French mathematician Edouard Lucas in 1883, spans "base 2". That is – the number of moves of disk number k is 2^(k-1), and the total number of moves required to solve the puzzle with N disks is 2^N 1. In the MToH puzzle, each disk has two distin...
متن کاملExplorations in 4-peg Tower of Hanoi
Finding an optimal solution to the 4-peg version of the classic Tower of Hanoi problem has been an open problem since the 19th century, despite the existence of a presumed-optimal solution. We verify that the presumed-optimal Frame-Stewart algorithm for 4-peg Tower of Hanoi is indeed optimal, for up to 20 discs. We also develop a distributed Tower of Hanoi algorithm, and present 2D and 3D repre...
متن کاملThe Tower of Hanoi and Finite Automata
Some of the algorithms for solving the Tower of Hanoi puzzle can be applied “with eyes closed” or “without memory”. Here we survey the solution for the classical tower of Hanoi that uses finite automata, as well as some variations on the original puzzle. In passing, we obtain a new result on morphisms generating the classical and the lazy tower of Hanoi, and a new result on auomatic sequences.
متن کاملLoopless Gray Code Enumeration and the Tower of Bucharest
We give new algorithms for generating all n-tuples over an alphabet of m letters, changing only one letter at a time (Gray codes). These algorithms are based on the connection with variations of the Tower of Hanoi game. Our algorithms are loopless, in the sense that the next change can be determined in a constant number of steps, and they can be implemented in hardware. We also give another fam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006